Multiple imputation for missing values through conditional Semiparametric odds ratio models.
نویسندگان
چکیده
Multiple imputation is a practically useful approach to handling incompletely observed data in statistical analysis. Parameter estimation and inference based on imputed full data have been made easy by Rubin's rule for result combination. However, creating proper imputation that accommodates flexible models for statistical analysis in practice can be very challenging. We propose an imputation framework that uses conditional semiparametric odds ratio models to impute the missing values. The proposed imputation framework is more flexible and robust than the imputation approach based on the normal model. It is a compatible framework in comparison to the approach based on fully conditionally specified models. The proposed algorithms for multiple imputation through the Markov chain Monte Carlo sampling approach can be straightforwardly carried out. Simulation studies demonstrate that the proposed approach performs better than existing, commonly used imputation approaches. The proposed approach is applied to imputing missing values in bone fracture data.
منابع مشابه
Multiple imputation of covariates by substantive model compatible fully conditional specification
Multiple imputation (MI) is a practical, principled approach to handling missing data. When used to impute missing values in covariates of regression models, imputation models may be mis-specified if they are not compatible with the substantive model of interest for the outcome. In this article we introduce the smcfcs command, which imputes covariates by substantive model compatible fully condi...
متن کاملEstimation in semiparametric models with missing data
This paper considers the problem of parameter estimation in a general class of semiparametric models when observations are subject to missingness at random. The semiparametric models allow for estimating functions that are non-smooth with respect to the parameter. We propose a nonparametric imputation method for the missing values, which then leads to imputed estimating equations for the finite...
متن کاملEfficiency transfer for regression models with responses missing at random
We consider independent observations on a random pair (X,Y ), where the response Y is allowed to be missing at random but the covariate vector X is always observed. We demonstrate that characteristics of the conditional distribution of Y given X can be estimated efficiently using complete case analysis, i.e., one can simply omit incomplete cases and work with an appropriate efficient estimator ...
متن کاملAccuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملImputations of missing values in practice: results from imputations of serum cholesterol in 28 cohort studies.
Missing values, common in epidemiologic studies, are a major issue in obtaining valid estimates. Simulation studies have suggested that multiple imputation is an attractive method for imputing missing values, but it is relatively complex and requires specialized software. For each of 28 studies in the Asia Pacific Cohort Studies Collaboration, a comparison of eight imputation procedures (uncond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 67 3 شماره
صفحات -
تاریخ انتشار 2011